Brian Cox and Jeff Forshaw explain the big bang


What is infinity? Is the Milky Way omelette-shaped? Readers ask particle physicists Brian Cox and Jeff Forshaw to unscramble some of the universe's mysteries
  • Comments (3)
  • Particle physicists Jeff Forshaw, left, and Brian Cox in London. Photograph: Katherine Rose for the Observer

    It was a scientific match made if not in heaven, then in manmade conditions approaching the big bang: Brian Cox and Jeff Forshaw first met at a particle collider in Hamburg 15 years ago. They have collaborated on various scientific projects ever since and are now both professors at Manchester University's Particle Physics Group and are involved in research projects at Large Hadron Collider at Cern, Geneva.

    1. The Quantum Universe: Everything that can happen does happen
    2. by Brian Cox, Jeff Forshaw
    3. Buy it from the Guardian bookshop
    Search the Guardian bookshop
    1. Tell us what you think:Star-rate and review this book

    Jeff explains their relationship thus: "Apart from Brian's pretty face, it's the fact that we both have this very direct, visceral love of physics, so we both really love what we're doing."

    Their second book together, The Quantum Universe: Everything That Can Happen Does Happen, is published by Allen Lane on Thursday. It's as breezily a written accessible account of the theory of quantum mechanics as you could wish for – from the Planck constant to the Higgs particle and everything theoretically in between. Observers looking for evidence that science is the new rock'n'roll should note that the book jacket is designed by Peter Saville of Factory Records fame.

    Brian's frequent TV appearances, handsome features and drainpipes have led to him being described as "something of a sex symbol" by the Daily Mail, a spoof column in New Scientistand satirical YouTube clips. Jeff, however, cuts a more conservative jib.

    We asked readers to send in questions via email, guardian.co.uk and Twitter and you responded magnificently with queries both theoretical and practical, covering subjects from the subatomic to the infinite. Here is a selection of their replies.

    Physics

    Is there a centre of the universe? 
    Marjorie Ainsworth, via email

    JF: It's a common misunderstanding of the big bang that the universe exploded into something, like a firework went off or something like that, and there was a centre that spewed out into something.

    BC: That seems to imply that everything is flying away from us and we're therefore somehow in a privileged position; that isn't true. The way it's often described is if you imagine some bread with raisins in it that you're baking in the oven and as you heat it, it expands. On any particular raisin, if you look, you can see all the other raisins receding from it. So it's space that stretching, it's not that everything's flying away.

    JF: It's the big stretch, not the big bang.

    If everything came from a singularity, what created it? 
    bbmatt, via web

    JF: What created the singularity? No idea. But that doesn't mean that some people haven't tried to come up with ideas. Anyway, everything coming from a singularity is a confusing line of questioning because the universe was probably infinite at the time of the big bang so it didn't really come from a singularity. It came from a singularity in the density, but I expect that the person who's asked that question imagined that the universe came from a point.

    … but that's very unlikely. We don't know what happens deep inside a black hole, so when the density of the universe gets very, very large then our calculations cease to work, so the honest answer is that before we reach the singularity, our ability to calculate fails. But that's not to undermine how accurately we can calculate, because we claim to understand the behaviour of the entire visible universe winding back through the big bang to a time when it was the size of a beach ball. So that's all the billions of galaxies and all the billions of stars in the galaxies compressed to about the size of a beach ball, which is pretty impressive.

    BC: General relativity, quantum mechanics, those things break down in there, so the idea that there is such a thing as a singularity in nature is unlikely. A lot of people think that if you have a proper theory of gravity that works smaller than the beach ball metaphor then you don't have these issues, but it's not known.

    JF: Another misunderstanding, which stems from that question, is the idea that the universe was small at the big bang. What was small at the time of the big bang was the entire visible universe, so everything we can see now, which is about 14bn light years away, all of that was compressed to the size of a pinhead. But it was one pinhead in an infinite space, so there's an infinite amount of stuff, as far as we can tell, outside our universe. So it's right to say that it's 14bn years old, but it's wrong to say that it's 14bn light years in size because it's probably infinitely big.

    However, the question that's probably been asked is what happened before the beginning and the answer to that is that nobody has a clue – so that's the honest answer.

    If there exists some particle that can travel faster than light, then surely there should be a way of sending information into the past?
    jamma88 via web

    BC: Yes, that's true. If you don't modify Einstein's theory of relativity and you take it at face value and send something faster than light, then yes, you can send messages into the past. So, if the current result is shown to be correct, then probably what you're saying is that you want a new theory of space and time, and then, who knows?

    JF: In a nutshell, if Einstein is right, then yes is the answer to the question. But you'd be very hard pressed to find a physicist who thought that Einstein is right if you find a particle travelling faster than the speed of light. What that means is that Einstein is wrong because you can't travel back into the past and so there's some new theory that comes into play, which protects the law of cause and effect. It's very hard to conceive of a logical universe in which cause and effect doesn't hold.

    What does no Higgs mean for physics? What are the other theories?
    Jason Mickler via email

    JF: No Higgs would be very exciting.

    BC: It could be more exciting than finding it. The favoured candidate for the something new that we know must exist at the Large Hadron Collider is the Higgs, but it could be something else.

    We've written several papers together and our most cited one is what would happen if there isn't a Higgs particle at the Large Hadron Collider and how we might explore the physics that must be there if there isn't one. It's very rare that you get to build an experiment in science where you're guaranteed to discover something new. The Large Hadron Collider is such an experiment, in that the standard model of particle physics predicts that there's going to be a Higgs particle. But it's not necessarily going to be there and if you take away the Higgs particle out of our standard theory, you take away all the maths and throw it in the bin and see what's left… and what's left is a theory that doesn't make sense.

    JF: Something will show up sooner rather than later. If the Higgs particle is relatively light, there's a range of masses we expect it to have and we should see it very soon, we could even see it before Christmas. If it's heavy or if the alternative to it is heavy, then it could take a few more years before we find it. We're closing in on it fast now though – the machine is working absolutely wonderfully, it really is.

    How do you feel about scientists who blog their research rather than waiting to publish their final results? 
    Stephen Marks via email

    BC: The peer review process works and I'm an enormous supporter of it. If you try to circumvent the process, that's a recipe for disaster. Often, it's based on a suspicion of the scientific community and the scientific method. They often see themselves as the hero outside of science, cutting through the jungle of bureaucracy. That's nonsense: science is a very open pursuit, but peer review is there to ensure some kind of minimal standard of professionalism.

    JF: I think it's unfair for people to blog. People have overstepped the mark and leaked results, and that's just not fair on their collaborators who are working to get the result into a publishable form.

    Scientists use supernova explosions to measure how far away supernovas are. The distance depends on how bright they appear against how bright they really are. How do scientists know how bright the supernova explosions should be?
    Bas Bouma via email

    JF: When stars explode in a particular way (called Type Ia supernovae) they do so in a remarkably consistent manner – that is to say one such explosion looks pretty much the same as any other. That means that if we can measure the distance to a "nearby" supernova using some other method (and not its brightness) then we can use that to calibrate things and determine the distance to more distant supernovae using only their brightness. Incidentally, these supernovae are remarkable events. White dwarf stars are small dead stars and they survive purely as a consequence of quantum mechanics but only if they weigh less than 1.4 times the mass of the Sun. If this thing accretes matter and sneaks past the magic 1.4 solar masses then the electrons within the star start to move close to the speed of light and that triggers a catastrophic collapse – the supernova.

    If question-asking is so fundamental to science, why has there been no research into how we might improve question-asking for learners in our places of education? 
    Laurence Smith